Fly ash grafted poly(acrylic acid-co-acrylamide) composite hydrogel as the carbon dioxide adsorbent
AIP Conference Proceedings, ISSN: 1551-7616, Vol: 2883, Issue: 1
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Conference Paper Description
The unique tuneable properties of hydrogel have served many purposes in various application. In this study, crosslinked poly(acrylic acid-co-acrylamide)(AAc/AAm) composite hydrogels was incorporated with coal fly ash (FA) was synthesised, characterized and analysed as adsorbent for carbon dioxide capture. The high alumina and silica content in the FA make it exploitable as the inorganic filler in the composite hydrogel. N,N'-methylenebis(acrylamide)(MBA) was used as crosslinker and ammonium peroxodisulphate (APS) as the initiator. Neat AAc/AAm hydrogel and FA-AAc/AAm hydrogels with 0.5, 1.0 and 2.0 wt% FA loading were synthesis using solution polymerization. Then, the hydrogels samples infused using monoethanolamine (MEA). The disappearance bands 1100 and 936 cm-1 in 0.5FA-AAc/AAm FTIR spectra indicates the FA as grafted into the AAc/AAm hydrogel matrices. The morphology of 0.5FA-AAc/AAm shows increment in pore volume after the addition of of FA. The TGA curves of 0.5FA-AAc/AAm displays the desorption and evaporation of carbon dioxide (CO2) and MEA occurred at 160°C and 220°C, respectively. The MEA uptake rate was also studied to understand the effect of FA on the absorption rate of MEA. The 2.0FA-AAc/AAm composite hydrogel showed 100% improvement in CO2 adsorption capacity compared to neat AAc/AAm. Due to the presence of FA and amine, it allowed more carbon dioxide gas molecule to absorbed into the hydrogel. The FA-AAc/AAm composite hydrogel has showed considerable potency as the CO2 adsorbent.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know