PlumX Metrics
Embed PlumX Metrics

Isotope effect on the anomalies of water: A corresponding states analysis

Journal of Chemical Physics, ISSN: 1089-7690, Vol: 160, Issue: 19
2024
  • 1
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Light and heavy water show similar anomalies in thermodynamic and dynamic properties, with a consistent trend of anomalies occurring at higher temperatures in heavy water. Viscosity also increases faster upon cooling in heavy water, causing a giant isotope effect, with a viscosity ratio near 2.4 at 244 K. While a simple temperature shift apparently helps in collapsing experimental data for both isotopes, it lacks a clear justification, changes value with the property considered, and requires additional ad hoc scaling factors. Here, we use a corresponding states analysis based on the possible existence of a liquid-liquid critical point in supercooled water. This provides a coherent framework that leads to the collapse of thermodynamic data. The ratio between the dynamic properties of the isotopes is strongly reduced. In particular, the decoupling between viscosity η and self-diffusion D, measured as a function of temperature T by the Stokes-Einstein ratio Dη/T, is found to collapse after applying the corresponding states analysis. Our results are consistent with simulations and suggest that the various isotope effects mirror the one on the liquid-liquid transition.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know