Optimized laser production of thermonuclear neutrons from plasma of submicron-sized clusters
Physics of Plasmas, ISSN: 1089-7674, Vol: 31, Issue: 7
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The concept of maximizing the D-D fusion neutron yield from the laser-heated large volume of cluster medium by matching the focal spot size and cluster plasma structural scales to the laser pulse intensity was confirmed. For this purpose, the three-dimensional particle-in-cell GEANT4 simulations have been performed by zoning of the large interaction domain. While considering a small domain of the entire interaction volume, which is partitioned into successive zones along laser propagation direction, a special algorithm was proposed allowing to reconstruct the integral spectrum of deuterons and D-D neutron yield. We demonstrate that it makes possible to specify high-performance laser-cluster neutron source following this concept. For example, for the submicron heavy water droplets heated by femtosecond laser pulse of the intensity 3 × 10 19 W/cm a D-D neutron yield may reach 10 7 neutrons per 1 J of deposited laser energy if the intensity contrast ratio prevents premature cluster destruction. Such yield is considerably higher than achieved to date for microstructured targets.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know