Identifying Arnold’s tongue for digital oscillators through event-based control in phase-locked loops
Chaos, ISSN: 1089-7682, Vol: 34, Issue: 10
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Digital phase-locked loops (PLLs) are essential feedback circuits for synchronizing signals in digital communication systems. While amplitude and phase vary continuously in analog oscillators, the amplitude remains constant in digital oscillators with dynamical variations manifesting exclusively through changes in the timing of signal transitions. In this work, we introduce a novel analytically solvable event-based model for phase-locking in digital PLLs that leverages the discrete nature of digital signals. By employing a sampled control strategy, we demonstrate one-to-one and higher ratios of frequency locking under positive and negative feedback. By discretizing the continuous control signal, we drive a discrete iterative map, which we then use to derive analytical expressions for bifurcation curves, analogous to Arnold’s tongue in analog oscillators. This mathematical framework provides an analytical approach for the analysis of synchronization and phase-locking in digital oscillators. Furthermore, the event-based control presented in this work for digital oscillators paves the way for energy-efficient circuit design and optimized control strategies for future digital communication systems.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know