Field-free spin-orbit torque magnetization switching in Pt/CoTb devices grown on flexible substrates for neuromorphic computing
Applied Physics Letters, ISSN: 0003-6951, Vol: 125, Issue: 18
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Flexible spintronic devices based on spin-orbit torque (SOT)-induced perpendicular magnetization switching (PMS) have attracted increasing attention due to their high storage intensity and good programming capability. However, to achieve deterministic PMS, an in-plane auxiliary magnetic field is required, which greatly limits its application. Here, we show that “robust” magnetic field-free SOT-driven PMS is realized in the oblique sputtered Pt/CoTb multilayers grown on a flexible polyimide substrate. “Robust” means the magnetic field-free SOT switching is highly repeatable and stable after 100 bending cycles under various bending conditions. Additionally, the fabricated flexible multilayers exhibit nearly linear and nonvolatile multistate plasticity as synapses and a nonlinear sigmoid activation function when acting as neurons. We construct a fully connected neural network for handwritten digit recognition, achieving an over 96.27% recognition rate. Our findings may spur further investigations on the SOT-based flexible spintronic devices for wearable artificial intelligence applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know