Proton quantal delocalization and H/D translocations in (MeOH)H (n = 2, 3)
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 161, Issue: 17
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we present results from path integral molecular dynamics simulations that describe the characteristics of the quantum spatial delocalizations of protons participating in OH bonds in (MeOH)H and in (MeOH)H. The characterization was carried out by examining the overall structures of the corresponding isomorphic polymers. To introduce full flexibility in the force treatment, we have adopted a neural network fitting procedure based on second-order Møller-Plesset perturbation theory predictions. For the dimer case, we found that the spatial extent of the shared connective proton can be portrayed in terms of a prolate-like structure with typical dimensions of ∼ 0.1 Å. On the other hand, the dangling polymers lie confined within a thin spherical layer, spread over length scales of the order of ∼ 0.25 Å. In contrast, connective protons in (MeOH)H exhibit larger delocalizations along the O-H bond and more localized ones along perpendicular directions, compared to their dangling counterparts. We also examined the characteristics of the relative propensities of H and D isotopes to be localized in dangling and connective positions. Physical interpretations of the different thermodynamic trends are provided in terms of the local geometrical characteristics and of the strengths of the corresponding intermolecular connectivities.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know