Siamese neural network improves the performance of a convolutional neural network in colloidal self-assembly state classification
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 161, Issue: 20
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Research from Louisiana State University in the Area of Chemical Physics Described (Siamese neural network improves the performance of a convolutional neural network in colloidal self-assembly state classification)
2024 DEC 12 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Current study results on chemical physics have been published.
Article Description
Identifying the state of the colloidal self-assembly process is critical to monitoring and controlling the system into desired configurations. Recent application of convolutional neural networks with unsupervised clustering has shown a comparable performance to conventional approaches, in representing and classifying the states of a simulated 2D colloidal batch assembly system. Despite the early success, capturing the subtle differences among similar configurations still presents a challenge. To address this issue, we leverage a Siamese neural network to improve the accuracy of the state classification. Results from a Brownian dynamics-simulated electric field-mediated colloidal self-assembly system and a magnetic field-mediated colloidal self-assembly system demonstrate significant improvement from the original convolutional neural network-based approach. We anticipate the proposed improvement to further pave the way for automated monitoring and control of colloidal self-assembly processes in real time and real space.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know