Estimating crown fuel loading for calabrian pine and Anatolian black pine
International Journal of Wildland Fire, ISSN: 1049-8001, Vol: 17, Issue: 1, Page: 147-154
2008
- 42Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fuels are of great importance in fire behaviour prediction. This paper deals with the prediction of aboveground foliage and branch biomass of calabrian pine (Pinus brutia Ten.) and Anatolian black pine (P. nigra J.F. Arnold subsp. nigra var. caramanica (Loudon) Rehder). The study was based on a total of 418 destructively sampled calabrian and black pine trees and saplings. As a result of the analyses, several regression equations were developed for predicting foliage, fine branch (<0.6 cm), medium branch (0.6?1.0 cm), active fuels (foliage + fine branch), thick branch (1.0?2.5 cm), and total fuel loading. The relationships between fuel biomass and tree properties were determined by multiple linear regressions, considering tree properties as the independent variables, and foliage, branch, active fuel and total biomass as the dependent variables. Tree properties included tree height, crown length, crown width, diameter at breast height and root collar diameter. Results indicated that foliage, branch and total biomass could all be accurately predicted based on the readily measurable and/or predictable tree characteristics. Of the fuel characteristics, crown length, crown width, and height were the three most significant predictors of fuel biomass. The results of this study will not only contribute to the prediction of fire behaviour, but will also be of invaluable use in other forestry disciplines. © IAWF 2008.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know