Direct measurement of mechanical and adhesive properties of living cells using surface forces apparatus
Australian Journal of Chemistry, ISSN: 0004-9425, Vol: 60, Issue: 9, Page: 638-645
2007
- 4Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The adhesive and mechanical properties of living cells assembled into a monolayer on two different substrates were investigated using the surface forces apparatus (SFA) technique. The force measurements allowed elastic and bending moduli of the cells plated on substrates to be determined. The moduli are in good agreement with data reported in the literature for single cells determined using atomic force microscopy. Results confirm that the nature of the cell?substrate interactions can mediate cell mechanical and adhesive properties. © CSIRO 2007.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know