Microfluidic droplet technique for in vitro directed evolution
Australian Journal of Chemistry, ISSN: 0004-9425, Vol: 63, Issue: 9, Page: 1313-1325
2010
- 6Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Increasingly over the past two decades, biotechnologists have been exploiting various molecular technologies for high-throughput screening of genes and their protein products to isolate novel functionalities with a wide range of industrial applications. One particular technology now widely used for these purposes involves directed evolution, an artificial form of evolution in which genes and proteins are evolved towards new or improved functions by imposing intense selection pressures on libraries of mutant genes generated by molecular biology techniques and expressed in heterologous systems such as Escherichia coli. Most recently, the rapid development of droplet-based microfluidics has created the potential to dramatically increase the power of directed evolution by increasing the size of the libraries and the throughput of the screening by several orders of magnitude. Here, we review the methods for generating and controlling droplets in microfluidic systems, and their applications in directed evolution. We focus on the methodologies for cell-based assays, in vitro protein expression and DNA amplification, and the prospects for using such platforms for directed evolution in next-generation biotechnologies. © CSIRO 2010.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know