Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants
Functional Plant Biology, ISSN: 1445-4408, Vol: 34, Issue: 9, Page: 822-834
2007
- 96Citations
- 81Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations96
- Citation Indexes96
- 96
- CrossRef42
- Captures81
- Readers81
- 81
Article Description
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase; EC3.1.3.37) was increased in the transgenic rice cultivar zhonghua11 (Oryza sativa L. ssp. japonica) by overexpressing OsSbp cDNA from the rice cultivar 9311 (Oryza sativa ssp. indica). This genetic engineering enabled the transgenic plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance of transgenic rice plants to salt stress at the young seedlings stage. Moreover, CO assimilation in transgenic rice plants was significantly more tolerant to salt stress than in wild-type plants. The analysis of chlorophyll fluorescence and the activity of SBPase indicated that the enhancement of photosynthesis in salt stress was not related to the function of PSII but to the activity of SBPase. Western-blot analysis showed that salt stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, this association was much more prominent in wild-type plants than in transgenic plants. Results suggested that under salt stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase by providing more regeneration of the acceptor molecule ribulose-1,5-bisphosphate in the soluble stroma and by preventing the sequestration of Rubisco activase to the thylakoid membrane from the soluble stroma, and, thus, enhanced the tolerance of photosynthesis to salt stress. Results suggested that overexpression of SBPase was an effective method for enhanncing salt tolerance in rice. © CSIRO 2007.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know