Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched head (bh - A1) near isogenic lines
Functional Plant Biology, ISSN: 1445-4416, Vol: 46, Issue: 11, Page: 1023-1035
2019
- 10Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef1
- Captures13
- Readers13
- 13
Article Description
Substantial genetic and physiological efforts were made to understand the causal factors of floral abortion and grain filling problem in wheat. However, the vascular architecture during wheat spikelet development is surprisingly under-researched. We used the branched head near-isogenic lines, FL-bh-A1-NILs, to visualise the dynamics of spikelet fertility and dry matter accumulation in spikelets sharing the same rachis node (henceforth Primary Spikelet, PSt, and Secondary Spikelet, SSt). The experiment was conducted after grouping FL-bh-A1-NILs into two groups, where tillers were consistently removed from one group. Our results show differential spikelet fertility and dry matter accumulation between the PSt and SSt, but also showed a concomitant improvement after de-tillering. This suggests a tight regulation of assimilate supply and dry matter accumulation in wheat spikelets. Since PSt and SSt share the same rachis node, the main vascular bundle in the rachis/rachilla is expected to bifurcate to connect each spikelet/floret to the vascular system. We postulate that the vascular structure in the wheat spikelet might even follow Murray's law, where the wide conduits assigned at the base of the spikelet feed the narrower conduits of the distal florets. We discuss our results based on the two modalities of the vascular network systems in plants.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know