Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils
Soil Research, ISSN: 1838-675X, Vol: 53, Issue: 1, Page: 67-80
2015
- 26Citations
- 30Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Feasibility of handheld mid-infrared spectroscopy to predict particle size distribution: influence of soil field condition and utilisation of existing spectral libraries.(Report)
Introduction Particle size distribution (PSD) is an important parameter for many soil physical and chemical properties including soil texture, hydraulic properties and soil reactivity (Fooladmand
Article Description
The development of techniques for the rapid, inexpensive and accurate determination of the phosphorus (P) buffer index (PBI) in soils is important in terms of increasing the efficiency of P application for optimum crop requirements and preventing environmental pollution due to excessive use of P fertilisers. This paper describes the successful implementation of partial least-squares regression (PLSR) from spectra obtained with bench-top and handheld mid-infrared (MIR) spectrometers for the prediction of PBI on 601 representative Australian agricultural soils. By contrast, poor predictions were obtained for available (Colwell) P. Regression models were successfully derived for PBI ranges of 0-800 and 0-150, the latter range resulting in the optimum model considering the dominance of low PBI soils in the sample set. Concentrations of some major soil minerals (mainly kaolinite and gibbsite content for high PBI, and smectites or illites for low PBI), quartz (representative of low surface area of soils) and, to a lesser extent, carbonate and soil organic matter were identified as the main drivers of the PBI models. Models developed with soils sieved to <2mm presented an accuracy similar to those developed using fine-ground material. The accuracy of the PLSR for the prediction of PBI by using bench-top and handheld instruments was also similar. Our results confirm the possibility of using MIR spectroscopy for the onsite prediction of PBI.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know