Effects of land use and topography on spatial variety of soil organic carbon density in a hilly, subtropical catchment of China
Soil Research, ISSN: 1838-675X, Vol: 55, Issue: 2, Page: 134-144
2017
- 9Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A good understanding the effects of environmental factors on the spatial variety of soil organic carbon density (SOCD) helps achieve a relatively accurate estimation of the soil organic carbon stock of terrestrial ecosystems. The present study analysed the SOCD of 1033 top soil samples (0-20cm) from the Jinjing catchment located in subtropical China. Spatial variability of SOCD was estimated using a geostatistics method and a geographically weighted regression (GWR) model, and the major environmental factors affecting SOCD were also explored. In the present study, SOCD had a moderate spatial dependence and the best-fitting model was exponential with a nugget-to-sill ratio of 60.72% and a range of 182m. Land use types (woodlands, paddy fields and tea fields) and topography (elevation, slope, topographic wetness index (TWI)) affected the spatial variation of SOCD. Mean SOCD in the paddy fields was higher than in woodland and tea fields (3.50 vs 3.24 and 2.81kgCm-2 respectively; P<0.05). In addition, SOCD was generally higher in the valleys of paddy fields (with low slope and high TWI) and the hills of woodland (with high elevation and increased slope). GWR generated the spatial distribution of SOCD more accurately than ordinary kriging, inverse distance weighted, multiple linear regression model, and linear mixed-effects model. The results of the present study could enhance our understanding of the effects of land use and topography on SOCD, and improve the accuracy in predicting SOCD by GWR in small catchments of complex land use and topography.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know