Estimation of post-fire vegetation recovery in boreal forests using solar-induced chlorophyll fluorescence (SIF) data
International Journal of Wildland Fire, ISSN: 1049-8001, Vol: 30, Issue: 5, Page: 365-377
2021
- 9Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The estimation of post-fire vegetation recovery is essential for forest management and wildfire policy-making. In the last few decades, vegetation indices have been widely used to monitor post-fire vegetation recovery by comparison with the pre-fire state. In this study, vegetation recovery is estimated using Solar-Induced chlorophyll Fluorescence (SIF), which is a by-product of photosynthesis and can reflect the physiological characteristics of a plant. We found that 20 years is insufficient for vegetation recovery, as the SIF within burned areas exhibited a significant increasing trend, which was most notable within the first 6 to 10 years after a wildfire. When comparing the SIF within and outside burned areas, we found that, during the first 3 to 6 years, SIF values outside burned areas were larger than that within burned areas; however, after ∼6 years, the SIF within the burned areas exceeded that outside burned areas owing to the different carbon sequestration intensities of different vegetation recovery stages. Field photos of recovering vegetation were then compared with the Enhanced Vegetation Index (EVI) trend within the burned area, and it was found that, although the EVI reached pre-fire levels or stabilised, vegetation recovery was continuing.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know