Variation and constraint in Hox gene evolution
Proceedings of the National Academy of Sciences of the United States of America, ISSN: 0027-8424, Vol: 110, Issue: 6, Page: 2211-2216
2013
- 25Citations
- 85Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef23
- Captures85
- Readers85
- 85
Article Description
Despite enormous body plan variation, genes regulating embryonic development are highly conserved. Here, we probe the mechanisms that predispose ancient regulatory genes to reutilization and diversification rather than evolutionary loss. The Hox gene fushi tarazu (ftz) arose as a homeotic gene but functions as a pair-rule segmentation gene in Drosophila. ftz shows extensive variation in expression and protein coding regions but has managed to elude loss from arthropod genomes. We asked what properties prevent this loss by testing the importance of different protein motifs and partners in the developing CNS, where ftz expression is conserved. Drosophila Ftz proteins with mutated protein motifs were expressed under the control of a neurogenic-specific ftz cis-regulatory element (CRE) in a ftz mutant background rescued for segmentation defects. Ftz CNS function did not require the variable motifs that mediate differential cofactor interactions involved in homeosis or segmentation, which vary in arthropods. Rather, CNS function did require the shared DNA-binding homeodomain, which plays less of a role in Ftz segmentation activity. The Antennapedia homeodomain substituted for Ftz homeodomain function in the Drosophila CNS, but full-length Antennapedia did not rescue CNS defects. These results suggest that a core CNS function retains ftz in arthropod genomes. Acquisition of a neurogenic CRE led to ftz expression in unique CNS cells, differentiating its role from neighboring Hox genes, rendering it nonredundant. The inherent flexibility of modular CREs and protein domains allows for stepwise acquisition of new functions, explaining broad retention of regulatory genes during animal evolution.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84873468307&origin=inward; http://dx.doi.org/10.1073/pnas.1210847110; http://www.ncbi.nlm.nih.gov/pubmed/23341600; https://pnas.org/doi/full/10.1073/pnas.1210847110; https://dx.doi.org/10.1073/pnas.1210847110; https://www.pnas.org/content/110/6/2211
Proceedings of the National Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know