Improved detection of synthetic lethal interactions in Drosophila cells using variable dose analysis (VDA)
Proceedings of the National Academy of Sciences of the United States of America, ISSN: 1091-6490, Vol: 114, Issue: 50, Page: E10755-E10762
2017
- 8Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef8
- Captures31
- Readers31
- 31
Article Description
Synthetic sick or synthetic lethal (SS/L) screens are a powerful way to identify candidate drug targets to specifically kill tumor cells, but this approach generally suffers from low consistency between screens. We found that many SS/L interactions involve essential genes and are therefore detectable within a limited range of knockdown efficiency. Such interactions are often missed by overly efficient RNAi reagents. We therefore developed an assay that measures viability over a range of knockdown efficiency within a cell population. This method, called Variable Dose Analysis (VDA), is highly sensitive to viability phenotypes and reproducibly detects SS/L interactions. We applied the VDA method to search for SS/L interactions with TSC1 and TSC2, the two tumor suppressors underlying tuberous sclerosis complex (TSC), and generated a SS/L network for TSC. Using this network, we identified four Food and Drug Administration-approved drugs that selectively affect viability of TSC-deficient cells, representing promising candidates for repurposing to treat TSC-related tumors.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85038558954&origin=inward; http://dx.doi.org/10.1073/pnas.1713362114; http://www.ncbi.nlm.nih.gov/pubmed/29183982; https://pnas.org/doi/full/10.1073/pnas.1713362114; https://dx.doi.org/10.1073/pnas.1713362114; https://www.pnas.org/content/114/50/E10755
Proceedings of the National Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know