Identifying microscopic factors that influence ductility in disordered solids
Proceedings of the National Academy of Sciences of the United States of America, ISSN: 1091-6490, Vol: 120, Issue: 42, Page: e2307552120
2023
- 5Citations
- 6Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures6
- Readers6
- Mentions1
- News Mentions1
- News1
Most Recent News
University of Pennsylvania Researcher Has Provided New Study Findings on Science (Identifying microscopic factors that influence ductility in disordered solids)
2023 OCT 23 (NewsRx) -- By a News Reporter-Staff News Editor at Ivy League Daily News -- Data detailed on science have been presented. According
Article Description
There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress–strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.
Bibliographic Details
Proceedings of the National Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know