Mrs5p, an Essential Protein of the Mitochondrial Intermembrane Space, Affects Protein Import into Yeast Mitochondria *
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 271, Issue: 29, Page: 17219-17225
1996
- 58Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations58
- Citation Indexes58
- 58
- CrossRef52
- Captures17
- Readers17
- 17
Article Description
We have isolated a yeast nuclear gene that suppresses the previously described respiration-deficient mrs2-1 mutation when present on a multicopy plasmid. Elevated gene dosage of this new gene, termed MRS5, suppresses also the pet phenotype of a mitochondrial splicing-deficient group II intron mutation M1301. The MRS5 gene product, a 13-kDa protein of low abundance, shows no similarity to other known proteins and is associated with the inner mitochondrial membrane, protruding into the intermembrane space. MRS5 codes for an essential protein, as the disruption of this gene is lethal even during growth on fermentable carbon sources. Thus, the Mrs5 protein seems to be involved in mitochondrial key functions aside from oxidative energy conservation, which is dispensable in fermenting yeast cells. Depletion of Mrs5p in yeast cells causes accumulation of unprocessed precursors of the mitochondrial hsp60 protein and defects in all cytochrome complexes. These findings suggest an essential role of Mrs5p in mitochondrial biogenesis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925818313218; http://dx.doi.org/10.1074/jbc.271.29.17219; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0030016042&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/8663351; https://linkinghub.elsevier.com/retrieve/pii/S0021925818313218; https://dx.doi.org/10.1074/jbc.271.29.17219
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know