PlumX Metrics
Embed PlumX Metrics

Mouse Mast Cell Protease 9, a Novel Member of the Chromosome 14 Family of Serine Proteases that is Selectively Expressed in Uterine Mast Cells *

Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 272, Issue: 46, Page: 29158-29166
1997
  • 53
    Citations
  • 0
    Usage
  • 17
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Mouse mast cell protease (mMCP) 1, mMCP-2, mMCP-4, and mMCP-5 are members of a family of related serine proteases whose genes reside within an ∼850 kilobase (kb) complex on chromosome 14 that does not readily undergo crossover events. While mapping the mMCP-1 gene, we isolated a novel gene that encodes a homologous serine protease designated mMCP-9. The mMCP-9 and mMCP-1 genes are only ∼7 kb apart on the chromosome and are oriented back to back. The proximity of the mMCP-1 and mMCP-9 genes now suggests that the low recombination frequency of the complex is due to the closeness of some of its genes. The mMCP-9 transcript and protein were observed in the jejunal submucosa of Trichinella spiralis -infected BALB/c mice. However, in normal BALB/c mice, mMCP-9 transcript and protein were found only in those mast cells that reside in the uterus. Thus, the expression of mMCP-9 differs from that of all other chymases. The observation that BALB/c mouse bone marrow-derived mast cells developed with interleukin (IL) 10 and c- kit ligand contain mMCP-9 transcript, whereas those developed with IL-3 do not, indicates that the expression of this particular chymase is regulated by the cytokine microenvironment. Comparative protein structure modeling revealed that mMCP-9 is the only known granule protease with three positively charged regions on its surface. This property may allow mMCP-9 to form multimeric complexes with serglycin proteoglycans and other negatively charged proteins inside the granule. Although mMCP-9 exhibits a >50% overall amino acid sequence identity with its homologous chymases, it has a unique substrate-binding cleft. This finding suggests that each member of the chromosome 14 family of serine proteases evolved to degrade a distinct group of proteins.

Bibliographic Details

John E. Hunt; Daniel S. Friend; Michael F. Gurish; Eric Feyfant; Andrej Šali; Chifu Huang; Namit Ghildyal; Stephen Stechschulte; K. Frank Austen; Richard L. Stevens

Elsevier BV

Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know