Degradation of Macrophage ApoE in a Nonlysosomal Compartment
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 272, Issue: 49, Page: 31156-31162
1997
- 33Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- CrossRef29
- Captures13
- Readers13
- 13
Article Description
Macrophage-derived apoE has been shown to play an important role in the susceptibility of the vessel wall to atherosclerosis. Previous studies have shown that macrophage sterol content modulates apoE synthesis and secretion, associated with a large transcriptional response of the apoE gene. The current studies were undertaken to evaluate the existence of additional post-transcriptional regulatory loci for the effect of sterols on apoE synthesis and secretion. Using a macrophage cell line transfected to constitutively express an apoE cDNA to facilitate detection of a post-transcriptional regulatory locus, we demonstrated that preincubations in 25-hydroxycholesterol and cholesterol lead to increased apoE secretion in pulse/chase experiments. Examination of cell lysates in these experiments showed that apoE not secreted by control cells was degraded and not detectable, suggesting that the preincubation in sterols increased secretion by decreasing degradation of newly synthesized apoE. The measurement of total protein and apoE degradation in cell fractions revealed an intermediate density fraction that degraded significant amounts of newly synthesized total protein and newly synthesized apoE. In this fraction, degradation of total protein and apoE was unaffected by chloroquine but was substantially reduced by N -acetyl-Leu-Leu-norleucinal plus N -acetyl-Leu-Leu-methioninal or by lactacystin, suggesting the involvement of proteasomes. Preincubation in sterol/oxysterol or acetylated low density lipoprotein did not modify total protein degradation by this fraction but inhibited apoE degradation. Similar results were obtained using intermediate density fractions isolated from human monocyte-derived macrophages. The results of our studies indicate that newly synthesized apoE in the macrophage can be degraded in an intermediate density nonlysosomal cellular compartment, which is sensitive to proteasomal inhibitors. Alteration of cellular lipid homeostasis by preincubation in sterol/oxysterol or acetylated low density lipoprotein inhibits apoE, but not total protein, degradation in this fraction. Inhibition of the degradation of apoE in this fraction likely contributes to the increased apoE secretion observed in sterol-enriched cells.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002192581989662X; http://dx.doi.org/10.1074/jbc.272.49.31156; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0030722210&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/9388269; https://linkinghub.elsevier.com/retrieve/pii/S002192581989662X; https://dx.doi.org/10.1074/jbc.272.49.31156
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know