PlumX Metrics
Embed PlumX Metrics

Identification of a Novel Signal Sequence That Targets Transmembrane Proteins to the Nuclear Envelope Inner Membrane *

Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 275, Issue: 6, Page: 3857-3866
2000
  • 34
    Citations
  • 0
    Usage
  • 30
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Herpesvirus maturation requires translocation of glycoprotein B homologue from the endoplasmic reticulum to the inner nuclear membrane. Glycoprotein B of human cytomegalovirus was used in this context as a model protein. To identify a specific signal sequence within human cytomegalovirus glycoprotein B acting in a modular fashion, coding sequences were recombined with reporter proteins. Immunofluorescence and cell fractionation demonstrated that a short sequence element within the cytoplasmic tail of human cytomegalovirus glycoprotein B was sufficient to translocate the membrane protein CD8 to the inner nuclear membrane. This carboxyl-terminal sequence had no detectable nuclear localization signal activity for soluble β-Galactosidase and could not be substituted by the nuclear localization signal of SV40 T antigen. For glycoprotein B of herpes simplex virus, a carboxyl-terminal element with comparable properties was found. Further experiments showed that the amino acid sequence DRLRHR of human cytomegalovirus glycoprotein B (amino acids 885–890) was sufficient for nuclear envelope translocation. Single residue mutations revealed that the arginine residues in positions 4 and 6 of the DRLRHR sequence were essential for its function. These results support the view that transmembrane protein transport to the inner nuclear membrane is controlled by a mechanism different from that of soluble proteins.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know