Non-replicating Epstein-Barr Virus-based Plasmids Extend Gene Expression and Can Improve Gene Therapy in Vivo *
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 275, Issue: 39, Page: 30408-30416
2000
- 35Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations35
- Citation Indexes35
- 35
- CrossRef29
- Captures11
- Readers11
- 11
Article Description
To date, no gene transfer vector has produced prolonged gene expression following a single intravenous injection and then efficiently re-expressed the delivered gene following repeated systemic injection into immunocompetent hosts. To overcome these limitations, a gene therapy regimen using non-replicating Epstein-Barr virus (EBV)-based expression plasmids was developed. One plasmid contains the FR (EBV f amily of r epeats) sequence and the expressed gene. The other encodes Epstein-Barr nuclear antigen 1 (EBNA-1), but lacks FR. Although unable to replicate in mice, intravenous co-injection of EBV-based plasmids in cationic liposome-DNA complexes (CLDCs) substantially prolonged luciferase gene expression. The use of a two-vector system limited host exposure to the EBNA-1 gene product. Furthermore, this EBV-based vector system could be intravenously re-injected multiple times into immunocompetent mice without loss of transfection efficiency. Use of this vector system significantly improved the therapeutic efficacy of the biologically important human granulocyte colony-stimulating factor gene. Delivery of the human granulocyte colony-stimulating factor gene in EBV-based plasmids increased circulating white blood counts for at least 2 months following a single CLDC-based intravenous co-injection. Conversely, white blood counts were never elevated following injection of CLDCs lacking EBV-derived elements. Thus, this EBV-based plasmid vector system both markedly prolongs gene expression at therapeutic levels and efficiently and repeatedly re-transfects immunocompetent hosts. These properties of EBV-based plasmid vectors appear to be due, at least in part, to the documented abilities of the EBNA-1 protein both to retain FR-containing DNA intracellularly and within the nucleus and to block anti-EBNA-1 cytotoxic T cell responses.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925818443815; http://dx.doi.org/10.1074/jbc.m004782200; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0034730623&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/10856307; https://linkinghub.elsevier.com/retrieve/pii/S0021925818443815; http://www.jbc.org/lookup/doi/10.1074/jbc.M004782200; https://syndication.highwire.org/content/doi/10.1074/jbc.M004782200; https://dx.doi.org/10.1074/jbc.m004782200
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know