Phosphorylation Site Mutations in Heterochromatin Protein 1 (HP1) Reduce or Eliminate Silencing Activity *
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 276, Issue: 12, Page: 9512-9518
2001
- 69Citations
- 70Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations69
- Citation Indexes69
- 69
- CrossRef60
- Captures70
- Readers70
- 70
Article Description
HP1 is an essential heterochromatin-associated protein in Drosophila. HP1 has dosage-dependent effects on the silencing of euchromatic genes that are mislocalized to heterochromatin and is required for the normal expression of at least two heterochromatic genes. HP1 is multiply phosphorylated in vivo, and HP1 hyperphosphorylation is correlated with heterochromatin assembly during development. The purpose of this study was to test whether HP1 phosphorylation modifies biological activity and biochemical properties of HP1. To determine sites of HP1 phosphorylation in vivo and whether phosphorylation affects any biochemical properties of HP1, we expressed Drosophila HP1 in lepidopteran cultured cells using a recombinant baculovirus vector. Phosphopeptides were identified by matrix-assisted laser desorption ionization/time of flight mass spectroscopy; these peptides contain target sites for casein kinase II, protein tyrosine kinase, and PIM-1 kinase. Purified HP1 from bacterial (unphosphorylated) and lepidopteran (phosphorylated) cells has similar secondary structure. Phosphorylation has no effect on HP1 self-association but alters the DNA binding properties of HP1, suggesting that phosphorylation could differentially regulate HP1-dependent interactions. Serine-to-alanine and serine-to-glutamate substitutions at consensus protein kinase motifs resulted in reduction or loss of silencing activity of mutant HP1 in transgenic flies. These results suggest that dynamic phosphorylation/dephosphorylation regulates HP1 activity in heterochromatic silencing.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925819462601; http://dx.doi.org/10.1074/jbc.m010098200; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0035937710&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/11121421; http://www.jbc.org/lookup/doi/10.1074/jbc.M010098200; https://syndication.highwire.org/content/doi/10.1074/jbc.M010098200; https://linkinghub.elsevier.com/retrieve/pii/S0021925819462601; https://dx.doi.org/10.1074/jbc.m010098200
American Society for Biochemistry & Molecular Biology (ASBMB)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know