PlumX Metrics
Embed PlumX Metrics

Hyaluronan-CD44 Interaction with Protein Kinase Cϵ Promotes Oncogenic Signaling by the Stem Cell Marker Nanog and the Production of MicroRNA-21, Leading to Down-regulation of the Tumor Suppressor Protein PDCD4, Anti-apoptosis, and Chemotherapy Resistance in Breast Tumor Cells *

Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 284, Issue: 39, Page: 26533-26546
2009
  • 295
    Citations
  • 0
    Usage
  • 172
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    295
  • Captures
    172

Article Description

Multidrug resistance and disease relapse is a challenging clinical problem in the treatment of breast cancer. In this study, we investigated the hyaluronan (HA)-induced interaction between CD44 (a primary HA receptor) and protein kinase Cϵ (PKCϵ), which regulates a number of human breast tumor cell functions. Our results indicate that HA binding to CD44 promotes PKCϵ activation, which, in turn, increases the phosphorylation of the stem cell marker, Nanog, in the breast tumor cell line MCF-7. Phosphorylated Nanog is then translocated from the cytosol to the nucleus and becomes associated with RNase III DROSHA and the RNA helicase p68. This process leads to microRNA-21 (miR-21) production and a tumor suppressor protein ( e.g. PDCD4 (program cell death 4)) reduction. All of these events contribute to up-regulation of inhibitors of apoptosis proteins (IAPs) and MDR1 (multidrug-resistant protein), resulting in anti-apoptosis and chemotherapy resistance. Transfection of MCF-7 cells with PKCϵ or Nanog-specific small interfering RNAs effectively blocks HA-mediated PKCϵ-Nanog signaling events, abrogates miR-21 production, and increases PDCD4 expression/eIF4A binding. Subsequently, this PKCϵ-Nanog signaling inhibition causes IAP/MDR1 down-regulation, apoptosis, and chemosensitivity. To further evaluate the role of miR-21 in oncogenesis and chemoresistance, MCF-7 cells were also transfected with a specific anti-miR-21 inhibitor in order to silence miR-21 expression and inhibit its target functions. Our results indicate that anti-miR-21 inhibitor not only enhances PDCD4 expression/eIF4A binding but also blocks HA-CD44-mediated tumor cell behaviors. Thus, this newly discovered HA-CD44 signaling pathway should provide important drug targets for sensitizing tumor cell apoptosis and overcoming chemotherapy resistance in breast cancer cells.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know