PlumX Metrics
Embed PlumX Metrics

Regulation of Human Mitochondrial Aldehyde Dehydrogenase (ALDH-2) Activity by Electrophiles in Vitro *

Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 286, Issue: 11, Page: 8893-8900
2011
  • 37
    Citations
  • 0
    Usage
  • 37
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Recently, mitochondrial aldehyde dehydrogenase (ALDH-2) was reported to reduce ischemic damage in an experimental myocardial infarction model. ALDH-2 activity is redox-sensitive. Therefore, we here compared effects of various electrophiles (organic nitrates, reactive fatty acid metabolites, or oxidants) on the activity of ALDH-2 with special emphasis on organic nitrate-induced inactivation of the enzyme, the biochemical correlate of nitrate tolerance. Recombinant human ALDH-2 was overexpressed in Escherichia coli; activity was determined with an HPLC-based assay, and reactive oxygen and nitrogen species formation was determined by chemiluminescence, fluorescence, protein tyrosine nitration, and diaminonaphthalene nitrosation. The organic nitrate glyceryl trinitrate caused a severe concentration-dependent decrease in enzyme activity, whereas incubation with pentaerythritol tetranitrate had only minor effects. 4-Hydroxynonenal, an oxidized prostaglandin J 2, and 9- or 10-nitrooleate caused a significant inhibition of ALDH-2 activity, which was improved in the presence of Mg 2+ and Ca 2+. Hydrogen peroxide and NO generation caused only minor inhibition of ALDH-2 activity, whereas peroxynitrite generation or bolus additions lead to severe impairment of the enzymatic activity, which was prevented by the thioredoxin/thioredoxin reductase (Trx/TrxR) system. In the presence of glyceryl trinitrate and to a lesser extent pentaerythritol tetranitrate, ALDH-2 may be switched to a peroxynitrite synthase. Electrophiles of different nature potently regulate the enzymatic activity of ALDH-2 and thereby may influence the resistance to ischemic damage in response to myocardial infarction. The Trx/TrxR system may play an important role in this process because it not only prevents inhibition of ALDH-2 but is also inhibited by the ALDH-2 substrate 4-hydroxynonenal.

Bibliographic Details

Oelze, Matthias; Knorr, Maike; Schell, Richard; Kamuf, Jens; Pautz, Andrea; Art, Julia; Wenzel, Philip; Münzel, Thomas; Kleinert, Hartmut; Daiber, Andreas

American Society for Biochemistry & Molecular Biology (ASBMB)

Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know