Tyrosine Radical Formation in the Reaction of Wild Type and Mutant Cytochrome P450cam with Peroxy Acids
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 279, Issue: 12, Page: 10919-10930
2004
- 92Citations
- 41Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations92
- Citation Indexes92
- 92
- CrossRef77
- Captures41
- Readers41
- 36
Article Description
We report a multifrequency (9.6-, 94-, 190-, and 285-GHz) EPR study of a freeze-quenched intermediate obtained from reaction of substrate-free cytochrome P450cam (CYP101) and its Y96F and Y96F/Y75F mutants with peroxy acids. It is generally assumed that in such a shunt reaction an intermediate [Fe(IV)=O, porphyrin-π-cation radical] is formed, which should be identical to the species in the natural reaction cycle. However, for the wild type as well as for the mutant proteins, a porphyrin-π-cation radical is not detectable within 8 ms. Instead, EPR signals corresponding to tyrosine radicals are obtained for the wild type and the Y96F mutant. Replacement of both Tyr-96 and Tyr-75 by phenylalanine leads to the disappearance of the tyrosine EPR signals. EPR studies at 285 GHz on freeze-quenched wild type and Y96F samples reveal g tensor components for the radical (stretched gx values from 2.0078 to 2.0064, gy = 2.0043, and gz = 2.0022), which are fingerprints for tyrosine radicals in a heterogeneous polar environment. The measurements at 94 GHz using a fundamental mode microwave resonator setup confirm the 285-GHz study. From the simulation of the hyperfine structure in the 94-GHz EPR spectra the signals have been assigned to Tyr-96 in the wild type and to Tyr-75 in the Y96F mutant. We suggest that a transiently formed Fe(IV)=O porphyrin-π-cation radical intermediate in P450cam is reduced by intramolecular electron transfer from these tyrosines within 8 ms.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925819642948; http://dx.doi.org/10.1074/jbc.m307884200; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=1642483708&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/14688245; http://www.jbc.org/lookup/doi/10.1074/jbc.M307884200; https://syndication.highwire.org/content/doi/10.1074/jbc.M307884200; https://linkinghub.elsevier.com/retrieve/pii/S0021925819642948; https://dx.doi.org/10.1074/jbc.m307884200
American Society for Biochemistry & Molecular Biology (ASBMB)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know