PlumX Metrics
Embed PlumX Metrics

Histone H2A and Spt10 Cooperate to Regulate Induction and Autoregulation of the CUP1 Metallothionein *

Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 280, Issue: 1, Page: 104-111
2005
  • 14
    Citations
  • 0
    Usage
  • 21
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Co-dependent recruitment of Ino80p and Snf2p is required for yeast CUP1 activation

  Introduction            It has long been agreed that chromatin structure can play a decisive role in gene regulation. Furthermore, trans-acting factors including transcriptional activators, coactivators, and

Article Description

Copper is an essential cellular cofactor that becomes toxic at high levels. Copper homeostasis is tightly regulated by opposing mechanisms that control copper import, export, and copper binding capacity within the cell. High levels of copper induce the expression of metallothioneins, small sulfhydryl-rich proteins with high metal binding capabilities that serve as neutralizers of toxic levels of metals. In yeast, the CUP1 gene encodes a copper metallothionein that is strongly induced in response to metals and other stress and is subsequently rapidly down-regulated. Activation of CUP1 is mediated by the copper-responsive transcriptional activator AceI, and also requires the histone acetylase Spt10 for full induction. We have examined the role of histone H2A in the normal regulation of the CUP1 gene. We have shown that specific H2A mutations in combination with spt10 deletions result in aberrant regulation of CUP1 expression. Certain lysine mutations in H2A alleviate the transcriptional defect in spt10 Δ strains, though CUP1 activation is still delayed in these mutants; however, CUP1 shutdown is normal. In contrast, serine mutations in H2A prevent CUP1 shutdown when combined with spt10 deletions. In addition, swi/snf mutants exhibit both impaired CUP1 induction and failure to shut down CUP1 normally. Finally, different Spt10-dependent histone acetylation events correlate with induction and shutdown. Taken together, these data indicate that CUP1 transcriptional shutdown, like induction, is an active process controlled by the chromatin structure of the gene. These results provide new insights for the role of chromatin structure in metal homeostasis.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know