Growth Factors of Lower Vertebrates
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 282, Issue: 44, Page: 31865-31872
2007
- 50Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef43
- Captures30
- Readers30
- 28
Article Description
Colony-stimulating factor-1 (CSF-1) regulates mononuclear cell proliferation, differentiation, and survival. The functions of CSF-1 are well documented in mammals; however, little is known about CSF-1 biology in lower vertebrates. This is the first report on the identification and functional characterization of a fish CSF-1 molecule expressed highly in the spleen and in phorbol 12-myristate 13-acetate-stimulated monocytes. Goldfish CSF-1 is a 199-amino acid protein that possesses the required cysteine residues to form important intra-chain and inter-chain disulfide bonds that allow CSF-1 to form a functional homodimer and to interact with its high affinity receptor, CSF-1R. Recombinant goldfish CSF-1 formed a homodimer and bound to the soluble goldfish CSF-1R. The addition of the recombinant CSF-1 to sorted goldfish progenitor cells, monocytes, and macrophages induced the differentiation of monocytes into macrophages and the proliferation of monocyte-like cells. The proliferation of these cells was abrogated by addition of an anti-CSF-1R antibody as well as the soluble CSF-1R. The ability of the soluble CSF-1R to inhibit CSF-1-induced proliferation represents a novel mechanism for the regulation of CSF-1 function.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925820430091; http://dx.doi.org/10.1074/jbc.m706278200; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=36148937527&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/17827160; https://linkinghub.elsevier.com/retrieve/pii/S0021925820430091; http://www.jbc.org/lookup/doi/10.1074/jbc.M706278200; https://syndication.highwire.org/content/doi/10.1074/jbc.M706278200; https://dx.doi.org/10.1074/jbc.m706278200
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know