Prediction of oral clearance from in vitro metabolic data using recombinant CYPs: Comparison among well-stirred, parallel-tube, distributed and dispersion models
Xenobiotica, ISSN: 0049-8254, Vol: 35, Issue: 6, Page: 627-646
2005
- 21Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef12
- Captures21
- Readers21
- 21
Article Description
Intrinsic clearances (CL) for the metabolism of NE-100, metoprolol, clarithromycin (CAM), lornoxicam and tenoxicam were predicted from in vitro data with recombinant cytochorme P450s (CYPs) using relative activity factor (RAF) and then compared with CL observed in human liver microsomes (HLM). The predicted CL correlated well with the observed CL in HLM. When oral clearances (CL) of low-clearance drugs such as metoprolol, CAM, lornoxicam and tenoxicam were predicted from the in vitro data using four physiological models (well-stirred, parallel tube, distributed and dispersion models), the predicted CL corresponded well with the observed CL in vivo and were similar among the four models. For a high-clearance drug, the predicted CL of NE-100 in extensive CYP2D6 metabolizers (EMs) was substantially different between individual models, although the predicted CL in a poor metabolizer of CYP2D6 (PMs) was similar. The CL ratio of NE-100 between the EMs and the PMs predicted from the dispersion model, which leads to a reliable prediction for the high-clearance drug, was 48.4, but the ratio decreased depending on the increase of the NE-100 plasma concentration. The results suggest that the CL decrease in the EMs is caused by saturation of NE-100 metabolism mediated by CYP2D6 and is based on increases in plasma NE-100 concentrations dependent on the dose of NE-100. The study suggests that the RAF and the in vitro-in vivo scaling approaches are useful for predicting CL from in vitro data with recombinant CYPs without using HLM and hepatocytes. © 2005 Taylor & Francis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know