Molecular Profiling of Cancer
Toxicologic Pathology, ISSN: 0192-6233, Vol: 32, Issue: SUPPL. 1, Page: 67-71
2004
- 22Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- CrossRef22
- 20
- Captures26
- Readers26
- 26
Article Description
The objective of molecular profiling of cancer is to determine the differential expression of genes and proteins from human tissue in the progression from normal precursor tissue to preneoplastic tissue to cancer in order to discover diagnostic, prognostic, and therapeutic markers. With the development of high-throughput analytical techniques such as microarrays and 2-D PAGE as well as the development of tools for cell procurement from histological sections such as laser capture microdissection (LCM), it is now possible to perform molecular analyses on specific cell populations from tissue. Since recognition of specific cell populations is critical, there is a need to optimize fixation and embedding not only to improve preservation of biomolecules, but also to maintain excellent histology. We have shown that 70% ethanol fixation of prostate tissue improves the recovery of DNA, RNA, and proteins over routine formalin fixation and maintains histological quality comparable to formalin. There is also a need to develop new technologies in order to expand the range of tissue types that can be analyzed. The development and applications of Layered Expression Scanning (LES) for the molecular analysis of whole tissue sections are discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know