Effects of a phycotoxin, okadaic acid, on oyster heart cell survival
Toxicological and Environmental Chemistry, ISSN: 0277-2248, Vol: 90, Issue: 1, Page: 153-168
2008
- 11Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Okadaic acid (OA) is a dinoflagellate toxin which accumulates in shellfish producing diarrhetic shellfish poisoning (DSP) in humans. It was found that OA is a highly selective inhibitor of protein phosphatase types 1 (PP1) and 2A (PP2A) which produces a marked increase in phosphorylation of several proteins, including p38 mitogen-activated protein (MAP) kinase. The cytotoxicity attributed to OA and the effects on p38 MAP kinase and calcium current were examined in the oyster Crassostrea gigas in this study. Data showed that p38 MAP kinase is strongly expressed in oyster heart and that OA bioaccumulated in cultured heart cells. Hence the effects of OA was tested in vitro and in vivo on oysters. OA was found to (i) exert a positive chronotropic effect on cultured atrial cardiomyocytes which is related to an increase in calcium current via PKC as shown by patch clamp measurements, (ii) produce an activation/ phosphorylation of MAP kinase as shown by Westernblot while the non-phosphorylated p38 remained constant during treatment, (iii) did not induce a pro-apoptotic effect. Data suggest that OA may also stimulate the anti-apoptotic pathway by phosphatase inhibition. © 2007 Taylor & Francis.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know