Sorption of pesticides on kaolinite and montmorillonite as a function of hydrophilicity
Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, ISSN: 0360-1234, Vol: 41, Issue: 4, Page: 333-344
2006
- 48Citations
- 46Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations48
- Citation Indexes48
- 48
- CrossRef26
- Captures46
- Readers46
- 46
Article Description
Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4- dichlorophenyl) urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite. Copyright © Taylor & Francis Group, LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know