Cancer, stem cells, and oncolytic viruses
Annals of Medicine, ISSN: 0785-3890, Vol: 40, Issue: 7, Page: 496-505
2008
- 37Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- 37
- CrossRef23
- Captures28
- Readers28
- 28
Review Description
Cells with stem cell-like attributes, such as self-renewal and pluripotency, have been isolated from hematological malignancies and from several solid tumor types. Tumor-initiating cells, also referred to as cancer stem cells, are thought to be responsible for the initiation and growth of tumors. Like their normal counterparts, putative cancer stem cells show remarkable resistance to radiation and chemotherapy. Their capacity for surviving apparently curative treatment can result in tumor relapse. Novel approaches that target tumor-initiating cells in addition to differentiated malignant cells, which constitute the bulk of the tumor, are required for improved survival of patients with metastatic tumors. Oncolytic viruses enter cells through infection and may therefore be resistant to defense mechanisms exhibited by cancer stem cells. Oncolytic adenoviruses can be engineered to attack tumor stem cells, recognized by linage-specific cell surface markers, dysfunctional stem cell-signaling pathways, or upregulated oncogenic genes. Normal stem cells may possess innate resistance to adenoviruses, as most humans have sustained numerous infections with various wild-type serotypes. This review focuses on current literature in support of cancer stem cells and discusses the possibility of using oncolytic virotherapy for killing these tumor-initiating cells. © 2008 Informa UK Ltd. (Informa Healthcare, Taylor & Francis AS).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know