Molecular simulation to aid in the understanding of the Aβ(1-42) peptide of Alzheimer's disease
Molecular Simulation, ISSN: 0892-7022, Vol: 26, Issue: 6, Page: 367-379
2001
- 10Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Aβ(1-42) peptide of Alzheimer's disease was studied by molecular modeling. The coordinates of the peptide were experimentally generated from solution-NMR spectroscopy, and the conformations were energy minimized using a combination of connectivity-based iterative partial equalization of orbital electronegativity with the MM + force field. There is a central folded domain in the Aβ peptide. This part is an apolar α-helix. The remaining residues form β-sheets. Aggregation requires that β-sheets interact by noncovalent bonding forces. The unsoluble, aggregated complexes are energetically stable and have ordered structures. A perspective in drug research is to design compounds that inhibit the hydrophobic cores of the individual Aβ peptides, blocking so the associations between the β-strains.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know