Protein oligomerization in the bacterial outer membrane (Review)
Molecular Membrane Biology, ISSN: 0968-7688, Vol: 26, Issue: 3, Page: 136-145
2009
- 31Citations
- 59Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
- CrossRef19
- Captures59
- Readers59
- 59
Review Description
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view. © 2009 Informa UK Ltd.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know