Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates
Biocatalysis and Biotransformation, ISSN: 1024-2422, Vol: 26, Issue: 1-2, Page: 59-67
2008
- 4Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Germinating barley seeds contain multiple forms of α-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The α-amylases are endo-acting and possess a long substrate binding cleft with a characteristic subsite binding energy profile around the catalytic site. Furthermore, several amylolytic enzymes that facilitate attack on the natural substrate, i.e. the endosperm starch granules, have secondary sugar binding sites either situated on the surface of the protein domain or structural unit that contains the catalytic site or belonging to a separate starch binding domain. The role of surface sites in the function of barley α-amylase 1 has been investigated by using mutational analysis in conjunction with carbohydrate binding analyses and crystallography. The ability to bind starch depends on the surface sites and varies for starch granules of different genotypes and botanical origin. The surface sites, moreover, are candidates for being involved in degradation of polysaccharides by a multiple attack mechanism. Future studies of the molecular nature of the multivalent enzyme-substrate interactions will address surface sites in both barley α-amylase 1 and in the related isozyme 2.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know