Identifying the cancer-associated fibroblast signature to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma
Computer Methods in Biomechanics and Biomedical Engineering, ISSN: 1476-8259, Vol: 28, Issue: 3, Page: 326-336
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that contribute toward the development of tumors. This study aimed to establish a new algorithm based on CAF scores to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma (LUSC). The RNA-seq data of LUSC patients were obtained from two databases and merged after removing inter-batch differences. The CAF-related data for each sample were obtained through three different algorithms. Consistency cluster analysis was performed to obtain different CAF clusters, which were analyzed to identify differentially expressed genes. These were subjected to uniform cluster analysis to obtain different gene clusters. The Boruta algorithm was used to calculate the CAF score. Three CAF clusters and two gene clusters were obtained, all of which differed in their patient prognoses and the content of infiltrating immune cells. Patients with high CAF scores exhibited worse overall survival, higher expression of biomarkers related to immune checkpoints and immune activity, and lower tumor mutation burden. The CAF score could also predict the immunotherapy response of patients. This study suggests that the CAF score can accurately predict the prognosis and immunotherapy response of LUSC patients.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know