Clinical trial designs for predictive biomarker validation: One size does not fit all
Journal of Biopharmaceutical Statistics, ISSN: 1054-3406, Vol: 19, Issue: 3, Page: 530-542
2009
- 106Citations
- 100Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations106
- Citation Indexes104
- 104
- CrossRef75
- Policy Citations2
- 2
- Captures100
- Readers100
- 100
Review Description
Traditionally, anatomic staging systems have been used to provide predictions of individual patient outcome and, to a lesser extent, guide the choice of treatment in cancer patients. With targeted therapies, biomarkers have the potential for providing added value through an integrated approach to prediction using the genetic makeup of the tumor and the genotype of the patient for treatment selection and patient management. Specifically, biomarkers can aid in patient stratification (risk assessment), treatment response identification (surrogate markers), or differential diagnosis (identifying individuals who are likely to respond to specific drugs). In this study, we explore two major topics in relation to the design of clinical trials for predictive marker validation. First, we discuss the appropriateness of an enrichment (i.e., targeted) vs. an unselected design through case studies focusing on the clinical question(s) at hand, the strength of the preliminary evidence, and assay reproducibility. Second, we evaluate the efficiency (total number of events and sample size) of two unselected predictive marker designs for validation of a marker under a wide range of clinically relevant scenarios, exploring the impact of the prevalence of the marker and the hazard ratios for the treatment comparisons. The review and evaluation of these designs represents an essential step toward the goal of personalized medicine because we explicitly seek to explore and evaluate the methodology for the clinical validation of biomarker guided therapy.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know