Local optima smoothing for global optimization
Optimization Methods and Software, ISSN: 1055-6788, Vol: 20, Issue: 4-5, Page: 417-437
2005
- 50Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
It is widely believed that in order to solve large-scale global optimization problems, an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if firstorder information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of global information on the problem, is a 'blind' procedure, aimed at placing observations as evenly as possible in the search domain. Often, this procedure reduces to uniform random sampling (like in Multistart algorithms or in techniques based on clustering). In this paper, we propose a new framework for global exploration which tries to guide random exploration towards the region of attraction of low-level local optima. The main idea originated by the use of smoothing techniques (based on Gaussian convolutions): the possibility of applying a smoothing transformation not to the objective function but to the result of local searches seems to have never been explored yet. Although an exact smoothing of the results of local searches is impossible to implement, in this paper we propose a computational approximation scheme which has proven to be very efficient and (maybe more important) extremely robust in solving large-scale global optimization problems with huge numbers of local optima and, in particular, for problems displaying a 'funnel' structure. © 2005 Taylor & Francis Group Ltd.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know