The role of microstructure modifications on electrochemical and plasma-nitriding behaviour of 316L steel produced by laser powder bed fusion
Philosophical Magazine, ISSN: 1478-6443, Vol: 103, Issue: 20, Page: 1855-1896
2023
- 5Citations
- 7Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Findings on Philosophy Described by Investigators at Indian Institute of Technology (IIT) Indore (The Role of Microstructure Modifications On Electrochemical and Plasma-nitriding Behaviour of 316l Steel Produced By Laser Powder Bed Fusion)
2024 MAR 25 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- Fresh data on Science - Philosophy are
Article Description
The study investigates the impact of microstructure modifications on the corrosion, passivation, and plasma-nitriding behaviour of 316L steel. Microstructure modifications are achieved through the laser powder bed fusion (L-PBF) process and surface mechanical attrition treatment (SMAT). Three scanning strategies (concerning the orientation of the sample surface with scanning directions) are used in the L-PBF process, and the corresponding samples are labelled as HNS (0°), INS (45°), and VNS (90°). The scanning strategies have altered the average grain size (maximum for HNS and minimum for VNS) and porosity (HNS has the highest). Porosity disappears after SMAT. The surface of the SMATed specimen (VS) has equiaxed austenite nanograins (∼32 nm) with a fine distribution of α’-martensite, nanotwins, and high dislocation density. Microstructure affects the passivation, corrosion, and nitriding behaviour of the steel. The VNS has the lowest corrosion rate, decreasing further after SMAT. The SMATed sample exhibits the lowest nitrided layer thickness (∼65 μm). SMAT followed by nitriding causes a gradient-structured layer (with improved hardness) consisting of a nitrided layer, SMATed layer, and core. The nitrided HNS sample (∼78 μm thick nitrided layer) is dominated by γ’-FeN, while the nitrided VNS and VS samples have a relatively higher proportion of expanded austenite.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know