Emerging power of proteomics for delineation of intrinsic tumor subtypes and resistance mechanisms to anti-cancer therapies
Expert Review of Proteomics, ISSN: 1744-8387, Vol: 13, Issue: 10, Page: 929-939
2016
- 3Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Introduction: Despite extreme genetic heterogeneity, tumors often show similar alterations in the expression, stability, and activation of proteins important in oncogenic signaling pathways. Thus, classifying tumor samples according to shared proteomic features may help facilitate the identification of cancer subtypes predictive of therapeutic responses and prognostic for patient outcomes. Meanwhile, understanding mechanisms of intrinsic and acquired resistance to anti-cancer therapies at the protein level may prove crucial to devising reversal strategies. Areas covered: Herein, we review recent advances in quantitative proteomic technology and their applications in studies to identify intrinsic tumor subtypes of various tumors, to illuminate mechanistic aspects of pharmacological and oncogenic adaptations, and to highlight interaction targets for anti-cancer compounds and cancer-addicted proteins. Expert commentary: Quantitative proteomic technologies are being successfully employed to classify tumor samples into distinct intrinsic subtypes, to improve existing DNA/RNA based classification methods, and to evaluate the activation status of key signaling pathways.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know