Corrosion behavior of stainless steels in simulated PWR primary water—effect of chromium content in alloys and dissolved hydrogen—
Journal of Nuclear Science and Technology, ISSN: 0022-3131, Vol: 45, Issue: 10, Page: 975-984
2008
- 160Citations
- 112Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The structure and composition of surface oxide films on austenitic stainless steels in hydrogenated high-temperature water were examined by changing the chromium content in alloys and the concentration of dissolved hydrogen in high-temperature water. Auger electron spectroscopy, X-ray diffraction and analytical transmission electron microscopy revealed that the oxide films had a double-layer structure: ironbased spinels as the outer layer and chromium-rich spinel oxide as the inner layer. Increasing the chromium content suppressed the corrosion rate and produced fine oxide particles with a higher chromium concentration in the inner layer. Increasing the concentration of dissolved hydrogen enhanced the corrosion rate without a notable change in oxide structure. These influences are considered to originate from changes in cation diffusion through the inner layer, such as a decrease in the lattice diffusion of iron in the inner layer due to a higher concentration of chromium in the oxide as a diffusion barrier for a high chromium content in the alloys and due to a lower oxygen partial pressure for a higher concentration of dissolved hydrogen. © 2008 Taylor and Francis Group, LLC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know