Kinetics of electro-Fenton ferrous regeneration (EFFR) on chlorinated organic compound degradation
Desalination and Water Treatment, ISSN: 1944-3986, Vol: 54, Issue: 4, Page: 1044-1053
2015
- 3Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The electro-Fenton ferrous regeneration (EFFR) process was studied for kinetic determination under various reaction conditions. A novel model equation of this process was proposed which uses 2,4-dichlorophenol (2,4-DCP) as a chlorinated organic reference for this study. The operating parameters, pH, electrical current densities, and hydrogen peroxide concentrations, were varied to validate this novel model and kinetic rate constant estimation. The kinetic rate constant of the hydroxyl radical (·OH) with 2,4-DCP obtained by the novel model from this experiment was between 6.76 × 10 9 and 7.82 × 10 9 M −1 s −1. As a result, the novel model showed a more suitable fit with the experimental data than the first-order model method. The goodness of data fit which were indicated by correlation coefficients r 2 demonstrated that the novel model can better describe the kinetics of the process for chlorinated organic compound oxidation than the first-order model. Hydroquinone, maleic, acetic, formic, and oxalic acids were the main oxidation intermediates in this experiment. A degradation pathway for chlorinated organic compound oxidation by EFFR process was proposed on the basis of the intermediate compounds detected.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know