Regression-Based Association Analysis with Clustered Haplotypes through Use of Genotypes
The American Journal of Human Genetics, ISSN: 0002-9297, Vol: 78, Issue: 2, Page: 231-242
2006
- 69Citations
- 40Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations69
- Citation Indexes69
- 69
- CrossRef68
- Captures40
- Readers40
- 40
Article Description
Haplotype-based association analysis has been recognized as a tool with high resolution and potentially great power for identifying modest etiological effects of genes. However, in practice, its efficacy has not been as successfully reproduced as expected in theory. One primary cause is that such analysis tends to require a large number of parameters to capture the abundant haplotype varieties, and many of those are expended on rare haplotypes for which studies would have insufficient power to detect association even if it existed. To concentrate statistical power on more-relevant inferences, in this study, we developed a regression-based approach using clustered haplotypes to assess haplotype-phenotype association. Specifically, we generalized the probabilistic clustering methods of Tzeng to the generalized linear model (GLM) framework established by Schaid et al. The proposed method uses unphased genotypes and incorporates both phase uncertainty and clustering uncertainty. Its GLM framework allows adjustment of covariates and can model qualitative and quantitative traits. It can also evaluate the overall haplotype association or the individual haplotype effects. We applied the proposed approach to study the association between hypertriglyceridemia and the apolipoprotein A5 gene. Through simulation studies, we assessed the performance of the proposed approach and demonstrate its validity and power in testing for haplotype-trait association.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0002929707623556; http://dx.doi.org/10.1086/500025; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=31544481920&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16365833; https://linkinghub.elsevier.com/retrieve/pii/S0002929707623556; http://www.cell.com/ajhg/abstract/S0002-9297(07)62355-6
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know