The effect of disordered substrate on crystallization in 2D
Journal of Physics Condensed Matter, ISSN: 1361-648X, Vol: 31, Issue: 44, Page: 445401
2019
- 5Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
Article Description
In this work, the effect of amorphous substrate on crystallization is addressed. By performing Monte-Carlo simulations of solid on solid models, we explore the effect of the disorder on crystal growth. The disorder is introduced via local geometry of the lattice, where local connectivity and transition rates are varied from site to site. A comparison to an ordered lattice is accomplished and for both, ordered and disordered substrates, an optimal growth temperature is observed. Moreover, we find that under specific conditions the disordered substrate may have a beneficial effect on crystal growth, i.e. better crystallization as a direct consequence of the presence of disorder.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know