Electronic behaviors during martensitic transformations in all-d-metal Heusler alloys
Journal of Physics Condensed Matter, ISSN: 1361-648X, Vol: 31, Issue: 42, Page: 425401
2019
- 49Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations49
- Citation Indexes49
- 49
- CrossRef1
- Captures22
- Readers22
- 22
Article Description
For solid-state phase transitions, the alterations of electronic structure driven by the band Jahn-Teller effect would play an essential role in the structural phase transitions and in switching the resistivity or magnetization states for potential applications. However, this evolution of the electronic structure and electronic transport during the martensitic transformations (MT) still lacks comprehensive investigations, especially in magnetic martensitic materials studied in recent years. In this work, we report a study on the electronic behaviors during the MT in a kind of all-d-metal NiFeMnTi Heusler magnetic shape memory alloys, by combining x-ray diffraction, calorimetric, magnetic, transport measurements and calculations. Based on the magnetic MTs, the system shows large magnetocaloric effect and magnetoresistance. In the whole temperature range, the system is dominated by hole carriers in both parent and martensite phases. A sharp increase in carrier concentration is observed across the transformations. Meanwhile, the mobility of holes is depressed due to the lattice distortion. A picture of the characteristics of MTs has been proposed for general understanding and clues of the potential spintronic applications based on the magnetostructural phase transitions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know