PlumX Metrics
Embed PlumX Metrics

2D gapless topological superfluids generated by pairing phases

Journal of Physics Condensed Matter, ISSN: 1361-648X, Vol: 34, Issue: 41
2022
  • 0
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We systematically investigate the ground state phase diagram and the finite temperature phase transitions for a Rydberg-dressed Fermi gas loaded in a bilayer optical lattice. When an effective finite-ranged attraction is induced, our self-consistent mean-field calculation shows that the gapped topological (p-wave) superfluids in each layer are coupled together by the s-wave pairing in an intermediate inter-layer distance with a spontaneously modulated phases between these two order parameters. The obtained ground state is a gapless topological superfluid with quantized topological charges characterizing the gapless points, leading to a zero energy flat band at the edges. Finally, we calculate the finite temperature phase diagrams of this two-dimensional gapless superfluid and observe two distinct critical temperatures, demonstrating the fruitful many-body effects on a paired topological superfluids.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know