PlumX Metrics
Embed PlumX Metrics

NBI optimization on SMART and implications for scenario development

Plasma Physics and Controlled Fusion, ISSN: 1361-6587, Vol: 66, Issue: 4
2024
  • 5
    Citations
  • 0
    Usage
  • 1
    Captures
  • 10
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    5
  • Captures
    1
  • Mentions
    10
    • News Mentions
      8
      • 8
    • Blog Mentions
      2
      • 2

Most Recent Blog

From The DOE's Princeton Plasma Physics Laboratory At Princeton University : "A new and unique fusion reactor comes together with PPPL’s contributions"

From The DOE's Princeton Plasma Physics Laboratory At Princeton University Sept. 30, 2024 [Today 1.22.25 from the institution] Rachel Kremen SMall Aspect Ratio Tokamak (SMART)

Most Recent News

A new and special fusion reactor has been built with help from PPPL’s work

The University of Seville is preparing to start its fusion reactor, SMART, which uses plasma to produce energy. Fusion researchers, including those from the U.S.’s

Article Description

The SMall Aspect Ratio Tokamak (SMART) under commissioning at the University of Seville, Spain, aims to explore confinement properties and possible advantages in confinement for compact/spherical tokamaks operating at negative vs. positive triangularity. This work explores the benefits of auxiliary heating through Neutral Beam Injection (NBI) for SMART scenarios beyond the initial Ohmic phase of operations, in support of the device’s mission. Expected values of electron and ion temperature achievable with NBI heating are first predicted for the current flat-top phase, including modeling to optimize the NBI injection geometry to maximize NBI absorption and minimize losses for a given equilibrium. Simulations are then extended for a selected case to cover the current ramp-up phase. Differences with results obtained for the flat-top phase indicate the importance of determining the plasma evolution over time, as well as self-consistently determining the edge plasma parameters for reliable time-dependent simulations. Initial simulation results indicate the advantage of auxiliary NBI heating to achieve nearly double values of pressure and stored energy compared to Ohmic discharges, thus significantly increasing the device’s performance. The scenarios developed in this work will also contribute to diagnostic development and optimization for SMART, as well as providing test cases for initial predictions of macro- and micro-instabilities.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know