PlumX Metrics
Embed PlumX Metrics

Estimation of magnetic levitation and lateral forces in MgB superconducting bulks with various dimensional sizes using artificial intelligence techniques

Superconductor Science and Technology, ISSN: 1361-6668, Vol: 37, Issue: 7
2024
  • 4
    Citations
  • 0
    Usage
  • 9
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The advent of superconducting bulks, due to their compactness and performance, offers new perspectives and opportunities in many applications and sectors, such as magnetic field shielding, motors/generators, NMR/MRI, magnetic bearings, flywheel energy storage, Maglev trains, among others. The investigation and characterization of bulks typically relies on time-consuming and expensive experimental campaigns; hence the development of effective surrogate models would considerably speed up the research progress around them. In this study, we first produced an experimental dataset containing the levitation and lateral forces between different MgB bulks and one permanent magnet under different operating conditions. Next, we have exploited the dataset to develop surrogate models based on Artificial Intelligence (AI) techniques, namely Extremely Gradient Boosting, Support Vector Regressor (SVR), and Kernel Ridge Regression. After the tuning of the hyperparameters of the AI models, the results demonstrated that SVR is the superior technique and can predict levitation and lateral forces with a worst-case accuracy scenario 99.86% in terms of goodness of fit to experimental data. Moreover, the response time of these models for the estimation of new datapoints is ultra-fast.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know